Category Archives: Project Controls

All project controls including EVM and Scheduling

Two ‘Not-to-be missed’ Conferences in May

The PGCS program for 2017 is now complete and offers two overseas speakers as well as Professor Peter Shergold – author of the landmark project management report to government “Learning From Failure”. To see what’s on at PGCS in Canberra between the 1st and 4th May go to:  http://www.pgcs.org.au/program/

In the USA you can attend the Annual Project Management College of Scheduling Conference in Atlanta from May 7th to 10th.  They have a terrific program, with speakers and panel discussions, prepared to give everyone a chance to participate.  In addition, we’re planning something special every evening.  Sunday night is the vendor reception, Monday night is our Gala Dinner and Tuesday night is a night to explore Atlanta.  For more details see: http://www.pmcos.org/

Project scheduling Update

1. A new paper looking at the origins of CPM has been uploaded to our PM-History page – http://www.mosaicprojects.com.au/Mag_Articles/P037_The_Origins_of_CPM.pdf looks at where the concepts that evolved into CPM and PERT originated. All of our papers can be found at: http://www.mosaicprojects.com.au/PM-History.html

2.  The PMI members’ only Scheduling Conference 2017 is going to be great! Over 17,000 people are registered already – I’m the last speaker for the day (which means I only have to get up at 6:00am Australian time to participate…..) More information see: https://www.projectmanagement.com/events/356123/PMI-Scheduling-Conference-2017  My topic looks at the effect of the data generated by BIM, drones and other technology on controls.

3.  PGCS Canberra is on in early May – too good to miss, see: http://www.pgcs.org.au/

Setting up a project controls system for success

A couple of hour’s hard thinking can make the difference between project success and failure!  Far too many projects are simply started without any real thought as to the best strategy for delivery and what control systems are really needed to support the management of that delivery – one size does not ‘fit-all’ and simply repeating past failures creates more failures.  Similarly, far too many control systems are implemented that simply generate useless paperwork (frequently to meet contractual requirements) when what’s needed is effective controls information.

Remembering that all project controls documents have to be used and maintained to be useful; the three key thinking processes needed to help build project success are:

  • First the big question – how are we going to do the work to maximise the opportunity of success and optimise risk??  This is a strategic question and affects procurement as much as anything – off-site assembly needs a very different approach to on-site assembly. This does not need a complicated document but the strategy does need to be agreed; see: www.mosaicprojects.com.au/WhitePapers/WP1038_Strategy.pdf
  • From the strategy, the project management team structure can be designed to best manage the work as it will be accomplished and these people (or at least the key people) can then contribute to the planning process. Pictures are as useful as anything to define the overall flow of the work; see: www.mosaicprojects.com.au/WhitePapers/WP1039_Project_Planning.pdf.
  • Once you know the way the work will be accomplished and the overall flow/sequence of the work you are now in a position to plan the project controls function aiming to apply the minimum amount of ‘controls’ necessary to be effective.  Excessive controls simply waste money and management time. My approach is always to do a bit less then I think may be needed because you can always add some additional features if the need eventuates – it Is nearly impossible to remove controls once they have been implemented.
  • Then you can develop the schedule and other control tools needed for effective management working within the framework outlined above.

This area is what PMI call Schedule strategy and Schedule planning and development. Getting this ‘front-end’ stuff right is the best foundation for a successful completion of a project; this is the reason these elements of project controls have a strong emphasis in the PMI-SP exam.

Conversely, stuffing up the strategy in particular, means the project is set up to fail and implementing control systems that do not support the management structures within the project simply mean the controls people are wasting their time and the time of everyone they engage with.

However, creating a project that is based on a sound strategy supported by a useful project controls system will require some cultural changes:

  • The project manager and project executive will need to take some time to look at strategic options and develop an effective delivery strategy.
  • The organisation and client will need to allow the project controls professionals to work through the challenges of developing a ‘light-but-effective’ controls system and then review/approve the system – this is more difficult than simply requiring every project to comply with some bloated standard controls process that no one uses (except for claims) but should deliver massive benefits.
  • The organisation will need skilled project controls professionals……….
  • And the project management team will need to be willing to work with and use the project controls.

The problem is easy to outline – fixing it to enhance the project success rate is a major challenge.

There’s a great Scheduling party in Atlanta this May!

Why not attend the Project Management College of Scheduling (PM-COS) annual conference either as a speaker or delegate and collect your ‘ticket to project success’?

pmcos2017

Some of the reasons for joining us at The Ritz-Carlton, Atlanta include:

  • CPM Scheduling has been around for more than fifty years.  How much is art?  How much is science?  Help us decide.
  • Network with schedule professionals from around the globe including many of the top practitioners and experts in the field.
  • Learn tips from experts such as the role that case law plays in schedule delay analysis.
  • Help us address important issues facing the scheduling profession today and how to resolve them as we move forward.
  • Attend presentations and panel discussions to learn the recent developments in the profession and how to implement them on your projects.

For more information and to register, visit us at www.pmcos.org!

Free, Exclusive Project Scheduling Virtual Event for PMI Members

pmi-virtual-scheduling

PMI members are entitled to register and attend this member-only event on the 29th March (9:00 am to 5:00 pm ET) for free! It is the perfect way to learn what’s new in project scheduling and network with PMI members across the globe. This year we are talking about how to tackle project scheduling challenges in a changing profession.

My presentation is focused on Projects Controls Using Integrated Data – The Opportunities and Challenges.   The presentation is focused on the practical and ethical challenges posed by integrated information management tools such as BIM and ‘drones’ in the construction/engineering industries and how this affects the work of project controls professionals.

To register go to: https://www.projectmanagement.com/events/356123/PMI-Scheduling-Conference-2017

If you are not a PMI member (or cannot make the date) watch this space.

 

The origins of PERT and CPM – What came before the computers!

The development of PERT and CPM as Mainframe software systems starting in 1957 is well documented with contemporary accounts from the key people involved readily available.  What is less clear is how two systems developed contemporaneously, but in isolation, as well as a number of less well documented similar systems developed in the same timeframe in the UK and Europe came to have so many similar features.  These early tools used the ‘activity-on-arrow’ (AoA or ADM) notation which is a far from obvious model.  Later iterations of the concept of CPM used the ‘precedence’ notation which evolved from the way flow-charts were and are drawn.

stockpile

One obvious connection between the early developments was the community of interest around Operation (or Operational) Research (OR) a concept developed by the British at the beginning of WW2.  OR had developed to include the concept of linear programming by the mid-1950s which is the mathematical underpinning of CPM, but while this link explains some of the cross pollination of ideas and the mathematics it does not explain terms such as ‘float’ and the AoA notation (for more on the development of CPM as a computer based tool see http://www.mosaicprojects.com.au/PDF_Papers/P042_History%20of%20Scheduing.pdf).

A recent email from Chris Fostel, an Engineering Planning Analyst with Northrop Grumman Corporation (CFostel@rcn.com) appears to offer a rational explanation.  I’ve reproduced Chris’ email pretty much verbatim below – the challenge posed to you is to see if the oral history laid out below can be corroborated or validated.  I look forward to the responses.

Chris’ Oral History

quartermaster_corpsI was told this story in 1978 by a retired quartermaster who founded his own company after the War to utilize his global contacts and planning skills.  Unfortunately the individual who told me this story passed away quite a few years ago and I’m not sure any of his compatriots are still alive either.  Regardless, I thought I should pass this along before I join them in the next life.  I do not wish to minimize the work of Kelly and Walker. They introduced critical path scheduling to the world and formalized the algorithms.  They did not develop or invent the technique.

The origin of critical path scheduling was the planning of the US Pacific Island hopping campaign during World War II.  The Quartermaster Corps coordinated orders to dozens if not hundreds of warships, troop ships and supply ships for each assault on a new island.  If any ships arrived early it would alert the Japanese of an imminent attack.  Surprise was critical to the success of the island hopping campaign.  The US did not have enough warships to fight off the much larger Japanese fleet until late in the war. Alerting the Japanese high command would allow the Japanese fleet to intercept and destroy the slow moving US troop ships before they had a chance to launch an attack. 

Initially the quartermasters drew up their plans on maps of the pacific islands, including current location and travel times of each ship involved.  The travel times were drawn as arrows on the map.  Significant events, personnel or supplies that traveled by air were shown as dashed lines hopping over the ship’s arrows.  The quartermasters would then calculate shortest and longest travel times to the destination for all ships involved in the assault. The plans became very complicated.  Many ships made intermediate stops at various islands to refuel or transfer cargo and personnel.  The goal was to have all ships arrive at the same time.  It didn’t take the quartermasters long to realize that a photograph of the planning maps would be a devastating intelligence lapse.  They started drawing the islands as identical bubbles with identification codes and no particular geographical order on the bubble and arrow charts. These were the first activity on arrow critical path charts; circa 1942. 

The only validation I can offer you is that by now you should realize that activity on arrow diagrams were intuitive as was the term ‘float.’  Float was the amount of time a particular ship could float at anchor before getting underway for the rendezvous.  Later when the US quartermasters introduced the technique to the British for planning the D-Day invasion the British changed float to “Slack”, to broaden the term to include air force and army units which did not float, but could ‘slack off’ for the designated period of time. 

You will not find a written, dated, account of this story by a quartermaster corps veteran.  Critical path scheduling was a military secret until declassification in 1956.  In typical fashion, the veterans of WWII did not write about their experiences during the War.  No one broke the military secrecy.  After 1956 they were free to pass the method on to corporate planners such as Kelly and Walker.  A living WWII Quartermaster veteran, should be able to provide more than my intuitive confirmation.

This narrative makes sense to me from a historical perspective (military planning has involved drawing arrows on maps for at least 200 years) and a timing perspective.  Can we find any additional evidence to back this up??  Over to you!

The Yin and Yang of Integrated Data Systems

yin_yangIntegrated project management information systems (PMIS) are becoming more common and more sophisticated ranging from ‘web portals’ that hold project data through to the potential for fully integrated design and construction management using BIM[1].  The benefits derived from using these systems can be as much as 20% of the build price on complex construction projects using BIM.

pmisThe advantages of this type of information storage and retrieval system include:

  • Ready access to data when needed via PDAs and ‘tablets’ significantly reducing the need for ‘push’ communication and the existence of ‘redundant data’[2].
  • One place to look for information with indexing and cross-referencing to minimise the potential for missed information.
  • Audit trails and systems to ensure only the latest version of any document is available.
  • Cross-linking of data in different documents and formats to assist with configuration management, requirements traceability, and change control.
  • Controls on who can ‘see’ the data, access the data and edit the data.
  • Workflow functions to remind people of their next job, list open actions, record actual progress, etc[3].
  • A range of built-in functions to validate data and avoid ‘clashes’, including locking or ‘freezing’ parts of the data set when that information has been moved into ‘work’.

These benefits are significant and a well-designed system reduces errors and enhances productivity leading to reduced costs, but the ‘yin’ of well-designed PMIS comes with a ‘yang’!

People increasingly tend to believe information produced from a computer system, this is true of ‘Facebook’, Wikipedia and flows through to more sophisticated systems. There also seems to be a steady reduction in the ability of younger people in particular to critically analyse information; in short, if it comes from the computer many people will assume it is correct. Add to this the ability of many of the more sophisticated PMIS tools to transpose and transfer information between different parts of the systems automatically or semiautomatically and there is a potential for many of the benefits outlined above to be undermined by poor data. This issue has been identified for decades and has the acronym GIGO – garbage in, garbage out.

The question posed in this blog is how many projects and project support organisations (PMOs, etc.) consider or actively implement effective data traceability.  Failed audits, overruns from scope oversights, and uninformed or ill-informed decision-making are just a few of the consequences project teams suffer from if they do not have full traceability of their project management data. This issue exists in any information processing system from basic schedule updating, through monthly reporting to the most sophisticated, integrated PMIS. If you cannot rely on the source data, no amount of processing will improve the situation! And to be able to rely on data, you need to be able to trace it back to its source.

tracabilityTraceability is defined as ‘the ability to trace the location, history and use of each data element’. This sounds simple but in reality can be very challenging, and the results of poor visibility can be devastating to a project. Some of the key questions to ask are:

  • Where did this data or these actuals come from?
  • What is the authorizing document and when did it get signed/approved?
  • Has everyone approved the change request or action item?

Traceability does not happen by accident! Project management information systems have to be designed with traceability as a key element in each of its aspects.  As information comes into the system the author or the origin of the information has to be recorded (preferably automatically). Depending on the nature of the information it may need to be quarantined until appropriate checks have been carried out and/or approvals have been obtained and then there needs to be traceability of any subsequent changes. The foundation of traceability is the combination of processes (people) and data management.

Therefore, the ‘yang’ of a sophisticated integrated project management information systems is that as the systems become more integrated and sophisticated people will come to rely on the information provided and ‘trust it’ whilst the source and veracity of the data used becomes less obvious.

Resolving this is partly process and partly people. The Chartered Institute of Building (CIOB) has produced the Time and Cost Management Contract Suite 2015 focused on complex construction projects using BIM.  This contract defines a number of key support roles (largely independent of the parties) focused on managing the information flows into and out of the system to ensure its accuracy and validity. Similar roles and responsibilities are essential in any effective PMIS.

My latest post on the PMI ‘Voices blog’, From Data to Wisdom: Creating & Managing Knowledge highlights the importance of data as the underpinning of all reporting and communication.  So the question is, how much focus does your project team or PMO put on ensuring the data it is using is timely, complete, accurate and traceable?

____________________

[1] BIM = Building Information Modelling, see: http://www.mosaicprojects.com.au/WhitePapers/WP1082_BIM_Levels.pdf

[2] For more on planning project communication see: http://www.mosaicprojects.com.au/Mag_Articles/ESEI-09-communication-planning.pdf

[3] A discussion on how these capabilities can enhance project controls is at: https://mosaicprojects.wordpress.com/2016/11/26/the-future-of-project-controls/